skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taylor, Aileen K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Methane (CH4) dynamics in wetlands are spatially variable and difficult to estimate at ecosystem scales. Patches with different plant functional types (PFT) represent discrete units within wetlands that may help characterize patterns in CH4variability. We investigate dissolved porewater CH4concentrations, a representation of net CH4production and potential source of atmospheric flux, in five wetland patches characterized by a dominant PFT or lack of plants. Using soil, porewater, and plant variables we hypothesized to influence CH4, we used three modeling approaches—Classification and regression tree, AIC model selection, and Structural Equation Modeling—to identify direct and indirect influences on porewater CH4dynamics. Across all three models, dissolved porewater CO2concentration was the dominant driver of CH4concentrations, partly through the influence of PFT patches. Plants in each patch type likely had variable influence on CH4via root exudates (a substrate for methanogens), capacity to transport gas (both O2from and CH4to the atmosphere), and plant litter quality which impacted soil respiration and production of CO2in the porewater. We attribute the importance of CO2to the dominant methanogenic pathway we identified, which uses CO2as a terminal electron acceptor. We propose a mechanistic relationship between PFT patches and porewater CH4dynamics which, when combined with sources of CH4loss including methanotrophy, oxidation, or plant‐mediated transport, can provide patch‐scale estimates of CH4flux. Combining these estimates with the distribution of PFTs can improve ecosystem CH4flux estimates in heterogenous wetlands and improve global CH4budgets. 
    more » « less